FLOW ANALYSIS OF VISCOELASTIC LIQUID FILM
IN A ROTATIONAL MIXER
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The flow of a viscoelastic liquid film in a field of centrifugal forces was studied within the frame-
work of the Oldroyd model,

§1. Let us examine the problem of flow of an énomalously viscous liquid along the inner surface of a
rapidly rotating cone (Fig. 1) which is rigidly connected to a reading system.

Experiments show that the steady flow of compositions based on certain polymeric materials is not al-
ways possible. It is highly probable that this fact is associated with the elastic properties of the medium. It
is expedient in the analysis of the indicated slow flow to make use of a differential type rheological model [1].
One of the simplest models of this type that describes various media is the Oldroyd model [2]. It has a form
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where oj); and Djk are the components of the stress deviator and of the deformation rate tensor, respectively,
while 6/6t is the tensor operator of the derivative with respect to time.

Various such operators are known, The most successful is the Jaumann operator because it converts a
symmetrical tensor to antisymmetrical {3].

Thus, suppose
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where V) and Wkm =l/ 2(Vm Vi — VikVm) are components of the velocity vector and of the antisymmetrical part
of the velocity gradient, respectively.
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The use of the tensor derivative with respect to time is necessitated by the presence of large deforma-
tions in the indicated blow.

§2. The characteristic features of the problem can be naturally divided into two groups. The first is
associated with the properties of the medium: 1> A; > Ay = 0, and the viscosity ¢ is sufficiently high. The sec-
ond is stipulated by the regime of the process [4]: Vi » V,, V3 =~ 0, and 8/0x% =~ 0.

Fig. 1. Schematic representation of liquid
flow in a conical rotor.

V. L Ui‘yanov—Lenin Kazan' State University. S. M, Kirov Kazan' Chemical Technology Institute. Trans-
lated from Inzhenerno-Fizicheskii Zhurnal, Vol. 34, No. 2, pp. 249-252, February, 1978. Original article sub-
mitted January 10, 1977,

164 0022-0841/78/3402- 0164 $07.50 ©1978 Plenum Publishing Corporation



4 4 :
a=g o<a< A
T~ o ~ -
~. ~ -
! ~ —— : _——
Z z z, z, z
¥ -}sad = N e
e -
-
-
-
-
z z
Fig. 2. Rheology at various values of param-
eter a.

Let V be the characteristic projection of velocity on the generatrix, and L is the characteristic size of
the cone. Let us suppose that
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The indicated features of the problem together with the definition (3) permit the simplification of Eq. (1}, In
order to do this, it is sufficient to evaluate the orders of magnitudes in this equation. As a result, for the
steady state we will have

O — M (OO + 01 07%) = 24 [Dy — 2y (@ D" + 0, D%)] ' (4)

Here and further on, the physical components of tensors play a part. Inasmuch as wj; =—w;; =0, the relation-
ship (4) is equivalent to the following system of equalities:

03y — 2h004, = 200 (Dyy — 24501, D ),
Oy + 240,04, = 200 (D, + 2004, D),
g5 + MO (043 — 03) = 21 [Dy, 4+ Ay, (Dyy— D))
Let us now subtract the second equality fromthefirst and substitute into the third. We then obtain
o (1 + 4}\:’; 03"1,2) = 2uDy, (1 + 4}‘17‘2(‘)%2) + 2pey (hy — Ay (D — Dy,).
In this equality the values w,, and Dy, are of the same order, and |(7\2 ~ A)(Dyy — Dyy)} < 1 by virtue of (3).

Finally, therefore, we will have
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where

v,

P >0, a=k/\.

Y= Moplt, z2=12

§3. Let us analyze the function (5). We have
g, = (+ )72 fazt — (1—3a) 2 + 1],
Yo, = (14 22)73 22 (1—a) (22— 3).

A simple investigation reveals that at 0 =< a < 1/9 a real solution z; of equation yy = 0 exists, whereupon Yo (2 <
0 (Fig. 2). The effective viscosity at point z; becomes zero, and at certain z > z, it is negative, which has no
physical meaning. The steady state is probably disrupted at this point.

(6)

Thus, at 0 = Ay/A; < 1/9 the Oldroyd model describes steady state only when 0 = z = z;,

Furthermore, if 1/9 = a < 1, then the function y(z) describes the entire Oswald curve [5]. Let us note
that the values 0 and 1 correspond to the Maxwell model and the Newtonian fluid, respectively.

§4. Let us find the velocity distribution and the equation for determining film thickness. For simpli-
city's sake, let us examine the case a =0.



The equations for motion under stress for the examined problem are easily integrated [4]. In particular,
0y = pFy (6, — ), ()
where F; = w’Rsing — g cosé.

From (5) and (7) it follows that
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Further, upon integrating (8) taking the limiting condition Vl(x‘, 0) =0 into account, we will have
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We find the film thickness §; from the condition of constant delivery

where A = /27 0F;.
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It is interesting to find the value of Ry,5% below which it is possible to have steady flow.
From (5)-(7) we find that 0iomax = 42\, 6/A =1, and from (9) we obtain
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NOTATION
3 is the stress tensor deviator;
D is the deformation rate tensor;
A; and X, are the relaxation times;
I’ is the viscosity coefficient;
\4 are the velocity components;
8y is the film thickness;
0 is the half-cone angle;
R is the distance from the axis to cone generatrix.
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